Java获取指定topic每个分区的当前偏移量
AI-摘要
新 · 都在 GPT
AI初始化中...
介绍自己
生成本文简介
推荐相关文章
前往主页
前往tianli博客
Java获取指定topic每个分区的当前偏移量
首先引入pom.xml
<dependencies>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<!--<version>2.1.10.RELEASE</version>-->
</dependency>
</dependencies>
配置properties.properties文件
因为我们需要获取的是每个消费者消费的topic的每个分区的当前偏移量,所以在properties配置文件中只需要配置消费者即可
不同的group_id消费相同的topic,当前的偏移量也会不一样的
#kafka消费者配置
spring.kafka.consumer.bootstrap-servers=
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.enable-auto-commit= false
spring.kafka.consumer.fetch-max-wait=30s
spring.kafka.consumer.fetch-min-size=
spring.kafka.consumer.group-id=
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.max-poll-records=500
执行获取topic每个分区的当前偏移量代码
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.TopicPartition;
import java.util.*;
/*
* @version 1.0 created by LXW on 2019/11/20 10:20
*/
public class KafkaUtil {
/**
* 获取当前topic下的全部分区的偏移量信息
*
* @param properties 配置信息
* @param partitions Collection<TopicPartition> partitions
* @return {partition:offset}
*/
public static Map<TopicPartition, Long> getPartitionsOffset(Map<String, Object> properties, Collection<TopicPartition>
partitions) {
KafkaConsumer consumer = new KafkaConsumer(properties);
try {
Map<TopicPartition, Long> endOffsets = consumer.endOffsets(partitions);
return endOffsets;
} catch (Exception e) {
e.printStackTrace();
return null;
}finally {
consumer.close();
}
}
/**
* 获取当前服务消费的topic的每个分区的当前偏移量
*
* @param properties 配置信息
* @param topics Collection<String> topics
* @return {
* topic:
* {
* partitionInfo:offset
* }
* }
*/
public static Map<String, Map<TopicPartition, Long>> getTopicPartitionsOffset(Map<String, Object> properties, Set<String> topics){
Map<String, Map<TopicPartition, Long>> topicPartitionMap = new HashMap<>();
KafkaConsumer kafkaConsumer = new KafkaConsumer(properties);
try {
for (String topic : topics) {
List<PartitionInfo> partitionsInfo = kafkaConsumer.partitionsFor(topic);
Set<TopicPartition> topicPartitions = new HashSet<>();
for (PartitionInfo partitionInfo : partitionsInfo) {
TopicPartition topicPartition = new TopicPartition(partitionInfo.topic(), partitionInfo.partition());
topicPartitions.add(topicPartition);
}
Map<TopicPartition, Long> topicPartitionsOffset = getPartitionsOffset(properties, topicPartitions);
topicPartitionMap.put(topic, topicPartitionsOffset);
}
return topicPartitionMap;
} catch (Exception e) {
e.printStackTrace();
return null;
}finally {
kafkaConsumer.close();
}
}
}
How to use
public static void main(String[] args) {
Set topics = new HashSet(Arrays.asList("test1", "test2"));
KafkaProperties kafkaProperties = new KafkaProperties();
kafkaProperties.setBootstrapServers(Arrays.asList("127.0.0.1:9200"));
kafkaProperties.setClientId("clientId");
Map<String, Object> consumerProperties = kafkaProperties.buildConsumerProperties();
Map<String, Map<TopicPartition, Long>> serviceTopicPartitionsOffset = KafkaUtil.getTopicPartitionsOffset(consumerProperties, topics);
// TODO waht you want to do
}
其中properties可以直接通过properties文件自动注入的方式自动加载进去
- 感谢你赐予我前进的力量
赞赏者名单
因为你们的支持让我意识到写文章的价值🙏
本文是原创文章,采用 CC BY-NC-ND 4.0 协议,完整转载请注明来自 Carol 小屋
评论
匿名评论
隐私政策
你无需删除空行,直接评论以获取最佳展示效果